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Investigation of Bessel beam propagation in scattering

media with scalar diffraction method
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Bessel beam propagation in scattering media is simulated using the angular spectrum method combined
with slice-by-slice propagation model. Generating Bessel beams with a spatial light modulator, which
provides a means to adjust flexibly the parameters of the Bessel beam, allows us to validate the simulation
results experimentally. The study reveals that the self-reconstructing length changes oppositely with the
axicon angle (i.e., the larger the axicon angle, the shorter the self-reconstructing length). The radius of
the incident beam has little influence on the self-reconstruction of the Bessel beam central lobe.
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The Bessel beam is a type of non-diffracting beam that
has gained increasing attention and has been studied
intensively[1−4]. Bouchal et al.[5,6] reported that the cen-
tral lobe of the Bessel beam was capable of reconstructing
its initial amplitude profile under free propagation after
being disturbed by an obstacle. The dynamic propaga-
tion of Bessel beams in a volumetric scattering media was
also numerically investigated[7,8], and the self-similarity
of the Bessel beam after a certain distance propagation in
scattering media was experimentally analyzed[9]. In addi-
tion, Katsev et al[10] used the theory of radiation transfer
to investigate the peculiarities of Bessel beam propaga-
tion in scattering absorbing media. Rohrbach[11] used
the beam propagation method to investigate the propa-
gation of illumination light in the scattering media. The
unique optical properties of Bessel beams also allows for
many applications. For example, Bessel beam is used as
a light source in line-scanned light-sheet microscopes to
increase image quality and penetration depth[7,8].

In the absence of a real Bessel beam that possesses infi-
nite power, a quasi-Bessel beam that has a limited power
and a limited travel distance can be generated in the labo-
ratory. Bessel beams can be experimentally generated by
passing light through metal axicon mirrors[12], round-tip
axicons[13], refractive axicon lenses[14], and fluidic axi-
con lenses[15]. These methods are simple and cost effec-
tive; however, adjusting the parameters of the generated
Bessel beams is inconvenient. As an alternative, a spa-
tial light modulator (SLM) can be used to generate Bessel
beams with the flexibility of tuning their parameters[16].

In this letter, a Bessel beam is generated with a SLM,
and influences of various experimental parameters on the
self-reconstruction behavior of the Bessel beam central
lobe are investigated by virtue of the flexibility of SLM. In
addition, the propagation of the Bessel beam in scatter-
ing media using a slice-by-slice model and angular spec-
trum method (ASM) is investigated. Experimental and

theoretical results are then compared.
ASM was combined with slice-by-slice propagation

model to simulate Bessel beam propagation in the scat-
tering media. The ASM method simulates beam propa-
gation via expanding a complex wave field into a num-
ber of plane waves, following the propagation of each in-
dividual plane wave through every optical element and
medium in the system, as well as summing up their final
complex amplitudes. The scattering medium is modeled
as a stack of slices, and each slice is assumed to have
a thickness of ∆ in the z direction (the light propaga-
tion direction), as shown in Fig. 1(a). M represents the
number of spherical beads that are randomly distributed
only on the first surface of each slice and are treated as
individual phase retarders. The total phase contribution
can be calculated with the summation of the phases of
all beads. For the jth bead in the ith slice with a com-
plex refractive index of ñbead, the phase contribution is
simply calculated according to the thickness distribution
dij(x, y)=2(R2–r2)1/2 along the z direction (Fig. 1(b)).
The sum of the optical paths of all the beads in the same
layer,

∑
δndij(x, y), contributes to the phase modula-

tion on the beam that passes through this layer. j = 1,
2, · · ·, Mdenotes the number of beads in the ith slice, and
δn=ñbead − n denotes the refractive index difference be-
tween the beads and the medium. Assuming that these
beads are not overlapping, the complex transmittance
function of the ith slice can be obtained accordingly

T̃i (x, y)=exp
[
ikδn

M∑

j

dij(x, y)
]
. (1)

The real and imaginary parts of δn reflect the refraction
and absorption of the jth bead, respectively. By using
Eq. (1), the transmittance distribution (a.u.) and the
phase distribution (rad) of slice i are shown in Figs. 1(c)
and (d), respectively. The propagation process from slice
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Fig. 1. (Color online) (a) Schematic diagram of Bessel beam
propagation in scattering media; (b) the geometry of a spher-
ical bead; (c) the transmittance and (d) phase distributions
of the simulated media. (x0, y0) denotes the coordinates of
the center of the jth bead in the ith slice and (x, y) denotes
the spatial coordinates in the x-y plane.

i to slice i+1 can be calculated by using the angular spec-
trum method[17−19]

Ei+1 (x, y) = FT−1{FT
(
T̃i · Ei (x, y)

)
· exp [ikz∆]},

(2)

where kz = k

√
1 − (λξ)

2
− (λη)

2
, with ξ and η be-

ing the coordinates in the spatial frequency domain.
FT{·} and FT−1{·} denote Fourier transform and in-
verse Fourier transform operators. As the complex am-
plitude EBessel(x, y, zmedia) of the Bessel beam entering
the scattering media is known, the complex amplitude
of the beam after any number of slices in the scattering
media can be calculated by using Eqs. (1) and (2). This
way, the light propagation in the scattering media can be
simulated numerically at any given depth of the media.

The presented method is a variation of the scalar wave
propagation method[20] and has a similar form as that
in the modal propagation method, which is derived di-
rectly from the Helmholtz equation[21] and widely used
to simulate light propagation in graded-index optical
fibers. The presented method calculates the fields prop-
agating from one plane to another by using two fast
Fourier transforms. Thus, the computing load is greatly
reduced. Another advantage of the presented method is
that it can be used for large-angle propagation, where,
in general, the Fresnel diffraction method does not per-
form well[22]. Nevertheless, the presented method is
restricted to forward propagation and cannot calculate
the back scattering, which is generally investigated by
Monte Carlo method[23−25]. Furthermore, the presented
method does not take polarization into consideration, so
it cannot be used for vector wave propagation, in con-
trast to that in Ref. [26].

In the simulation, the Gaussian beam with wavelength
of λ=632.8 nm has a waist radius of w0 = 4.32 mm. The
axicon with open angle α = 1.11◦ and refractive index
1.51 is located across the Gaussian beam at its waist po-
sition to generate the Bessel beam. The refractive index

difference between the homogenous media and the beads
is δn = 0.05 + 0.005i. The diameter of the spherical
beads is D = 60 µm. The density of the spherical beads
in each slice is 20 beads/mm2. The area of the input
beam is sampled with a 1920 × 1080 pixel array with a
pixel size of 8× 8 (µm).

Firstly, the propagation process of the Bessel beam in

free space is calculated using Eqs. (1) and (2) with T̃1=1.
The intensity distributions of the Bessel beam in the x–y
plane after propagating along the axial direction at the
distances of 0, 1, · · ·, and 50 mm, are shown in Fig. 2(a).
The non-diffracting property of the Bessel beam central
lobe can be clearly seen with its unchanged beam profile
after travelling for a long distance of 50 mm. Secondly,
the Bessel beam propagation through one layer of scat-
tering is simulated to investigate the self-reconstruction
behavior of the Bessel beam central lobe. Some beads
are distributed at the plane (denoted with subfigure I in
Fig. 2(b)) with a distance of 80 mm from the axicon.
The central lobe diameter of the incident Bessel beam is
48 µm, and the diameters of randomly distributed beads
are all 60 µm. One of the beads with the aforementioned
diameter blocks the Bessel beam central lobe to simu-
late the self-reconstruction behavior of the Bessel beam
central lobe. The complex amplitude distribution of this
layer is calculated and denoted with T̃1(x, y). After
passing this layer, the complex amplitude distribution of
the beam becomes Et(x, y)=T̃1(x, y) Ei(x, y). The beam
intensity distributions after propagating for distances of
0, 1, 5,. . . , and 50 mm are shown in Fig. 2(b). As several
beads are located across the beam, the field is severely
disturbed because of the absorption and refraction of the
beads. However, the simulation shows that the beam in-
tensity profile recovers gradually while propagating for a
distance of 5 mm in the scattering medium. The Bessel
beam propagating through a thick scattering media is
also investigated. The media is composed of seven layers
(with a 10-mm distance between the two neighboring
layers) filled with random spherical beads. The corre-
sponding transmittance is schematically shown in Fig.
2(c). The volumetric density of the spherical beads in
each slice is 2 beads/mm3. The zoomed central parts
of each subfigure in Fig. 2(c) show the relative position
between the Bessel beam central lobe and the spherical
beads in Fig. 2(d). The beam intensity distributions
after propagating through each layer are shown in Fig.
2(e), respectively. The Bessel beam central lobe can
penetrate through a thick scattering media, keeping its
profile for a long distance.

The experimental setup of the Bessel beam generation
and propagation is shown in Fig. 3. A He-Ne laser with a
wavelength of 632.8 nm served as the light source, and the
intensity and polarization of the laser output were con-
trolled by a neutral filter (NF) and a polarizer P, respec-
tively. The polarizer P was used to adjust the beam po-
larization to maximize the efficiency of the SLM for phase
modulation. Subsequently, the beam was expanded by
a beam expander (BE) and illuminated on SLM (Pluto
NIR2, HoloEye Inc., Germany, 1920×1080 elements) af-
ter passing through a non-polarizing beam splitter (BS).
The 0th-order Bessel beam can be generated by loading
an axicon phase on the SLM. After reflected by the SLM,
the modulated beam passed through the BS and was
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Fig. 2.(Color online) Simulations of the self-reconstruction
process of Bessel beam central lobe. (a) The intensity distri-
butions of the Bessel beam after propagating along the axial
direction for distances of 0, 1, · · ·, and 50 mm in free space.
(b) The intensity distributions in the x-y plane of the Bessel
beam propagating for distances of 0, 1, · · ·, 50 mm when
blocked by some identical beads. (c) Transmittance distribu-
tions of seven layers of scattering beads; (d) zoomed central
parts in (c). (e) The intensity distributions of the Bessel beam
after passing through each layer of scattering media. The blue
dashed circles in (d) denote the positions of the Bessel beam
central lobe in each slice.

relayed by a telescope system L1-L2 to the sample plane.
Considering that the Bessel beam has a ring shape in the
spatial frequency plane, an annular aperture was used
to filter out some components that did not belong to
the Bessel beam. Thus, the quality of the Bessel beam
improved noticeably.

In the experiment, a layer of scattering particles (with
an average diameter of 60 µm) was stacked on a glass
plate and placed across the Bessel beam. The central
lobe diameters of the Bessel beam generated with the
axicon angles α = 1.11◦ and 0.68◦ are 48 and 80 µm,
which agree basically with the theoretical values of 49
and 80 µm[27]. A CCD camera (DFK 31BU03, Imaging
Source Inc., Germany) equipped with a modern L3-L4

telescopic lens was used to capture images of the sam-
ple plane for image recording. By moving the CCD in
the z direction, the intensity distribution of the Bessel
beam passing through the sample was recorded. The pa-
rameters influencing the self-reconstruction of the Bessel
beam central lobe were also investigated.

Firstly, the influence of the axicon angle α on the
self-reconstruction of the Bessel beam central lobe
is observed. When the radius of the incident beam
Ri = 4.32 mm is fixed, the self-reconstruction behav-
iors of the Bessel beam central lobe at α = 1.11◦ and
0.68◦ are shown in the first row of Figs. 4(a) and (b).
The experimental results reveal that for the axicon angle
α = 1.11◦, the Bessel beam central lobe regains its ini-
tial intensity profile at a distance of 20 mm, whereas for
the axicon angle α = 0.68◦, the Bessel beam center lobe
regains its initial intensity profile with a longer distance
of 35 mm. Thus, the self-reconstruction behavior of the
Bessel beam central lobe with α = 1.11◦ is superior to
that generated with α = 0.68◦. For comparison, the

self-reconstruction property of the Bessel beam central
lobe was also theoretically investigated at α = 1.11◦

and 0.68◦, and the corresponding results are shown in
the second row of Figs. 4(a) and (b). Furthermore, de-
pendence of the self-reconstructing length on the axicon
angle is measured, and the result is plotted in Fig. 4(c).
The self-reconstructing length is defined as the value
that the intensity of the center lobe recovers, which is
75% of the original value. Clearly, the larger the axicon
angle, the shorter the self-reconstructing length and the
better the self-reconstruction behavior. Results show
that the larger the axicon angle, the larger the Bessel
beam central lobe, the larger the angle of the incident
beam refracted, and the faster the beam gathers on the
axis beyond the blocking spot, as shown in Fig. 4(d).
However, specific experiments show a limit for the angle
α, which governs the spot size of the generated beam. In
a microscopic imaging system, the spot size is fixed and
the refracted angle of the beam after the axicon is no
larger than NA/M , where NA and M are the numeri-
cal aperture and the magnification of the imaging system.

Fig. 3. (Color online). Schematic of the experimental setup
for studying Bessel beam generation and propagation. M1,
M2, mirrors; L1, L2, L3, L4, lenses with focal lengths: f1=150
mm, f2=150 mm, f3=150 mm, f4=200 mm, respectively.

Fig. 4. (Color online). The influence of the axicon angle on
the Bessel beam central lobe self-reconstruction. The self-
reconstruction of the Bessel beam generated with the axicon
angles of (a) 1.11◦ and (b) 0.68◦, respectively. The first and
second rows in (a) and (b) show the experimental and simula-
tion results; (c) the self-reconstructing length versus the axi-
con angle; and (d) geometrical analysis of the influence of the
axicon angle. Subfigure I displays the intensity distributions
of the Bessel beams right before entering the scattering me-
dia; II to VII display the intensity distributions of the Bessel
beams at different travel distances in the scattering media.
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Secondly, the influence of the radius of the incident
beam Ri on the self-reconstruction of the Bessel beam
central lobe is investigated. When α = 1.11◦ fixed, the
self-reconstructions of the Bessel beam central lobes un-
der Ri = 4.32 and 2.16 mm are illustrated in the first
row of Figs. 5(a) and (b). Similarly, the corresponding
theoretical simulations are shown in the second row of
Figs. 5(a) and (b). The self-reconstructing length ver-
sus the radius of the incident beam (Ri=1.1 to 4.3 mm)
is plotted in Fig. 5(c). The figure shows that the self-
reconstructing length maintains a constant of 20 mm (for
a fixed axicon angle α=1.11◦ and the Bessel beam cen-
tral lobe diameter is 60 µm). The incident beam radius
is much larger than the size of the scattering particle,
and the radius of the incident beam has little influence
on the self-reconstruction (Fig. 5(d)). When two inci-
dent beams with different radii (R1 6= R2) pass through
the same axicon, the same position point B after block-
ing and the same self-reconstructing length are retained.
The self-reconstructing length of a Bessel beam central
lobe is highly related to the diffraction-free propagation

Fig. 5. (Color online). The influence of the incident beam
radius Ri on the Bessel beam central lobe self-reconstruction.
The self-reconstruction of the Bessel beam central lobe gener-
ated with incident radii Ri= (a) 4.32 and (b) 2.16 mm, respec-
tively. The first and second rows in (a) and (b) show the ex-
perimental and simulation results; (c) the self-reconstructing
length versus the incident beam radius; (d) geometrical anal-
ysis for the influence of beam radius.

Fig. 6. (Color online). The influence of the number of scatter-
ing slices on the Bessel beam central lobe self-reconstruction.
Experimental intensity distributions of the Bessel beam pass-
ing through (a) one and (b) two slices, respectively (first row),
and the corresponding theoretical simulations (second row).

range. However, a distinction between the two can be
observed: the former is solely determined by the axicon
angle but the latter is determined by both the axicon
angle and the width of the incident beam. The fixed
axicon angle shows that the larger the width of the in-
cident beam, the larger the diffraction-free range. The
self-reconstructing length remains constant.

Finally, the thickness of scattering media on the self-
reconstruction behavior of Bessel beam central lobe is
investigated. In this experiment, the beam propagation
is compared between one (one glass plate with scattering
particles) and two layers of scattering (two glass plates
with scattering particles on their surfaces and placed in
parallel distance of 5 mm). The self-reconstruction of the
Bessel beam central lobe passing through one and two
layers of sample are shown in the first row of Figs. 6(a)
and (b), respectively. Results show that the Bessel beam
central lobe recovers its shape when passing through ei-
ther one or two slices of sample, although the intensity
of the latter is clearly decreased. The corresponding the-
oretical simulations are shown in the second row of Figs.
6(a) and (b). Both the simulation and experimental re-
sults reveal that the Bessel beam central lobe can retain
its characteristics when passing through multiple slices
of the scattering media, but exhibits decreased intensity
through thicker medium because each slice of scattering
medium will cause a certain amount of beam energy to
deflect from the original beam. However, other parame-
ters, such as spatial quality of the Bessel beam and size of
scattering centers, can also affect the propagation char-
acteristics of a Bessel beam through a scattering media.
Considering the theoretical and experimental methods
presented, the influence of these parameters can also be
investigated.

In conclusion, the propagation of the Bessel beam in
scattering media is simulated by using ASM combined
with a slice-by-slice propagation model. The theoretical
results are verified by experiments using SLM to gen-
erate Bessel beams. The simulation and experimental
results demonstrate that the axicon angle has distinct
influences on self-reconstruction. The larger the axicon
angle, the shorter the self-reconstructing length. The
radius of the incident beam has little influence on the
self-reconstruction of the Bessel beam central lobe. The
Bessel beam central lobe can retain its characteristics
when passing through multiple slices of scattering media
but will lose more energy through thicker media.
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